
An innovative virtual sensing 
system for the vehicle-centric 
evaluation of emissions in the 
sustainable mobility transition
Silvia Carla Strada, Antonio Pagliaroli & Sergio Matteo Savaresi

The objective of the research is to develop a new methodology capable of quantifying the emissions of 
internal combustion engine cars based not only on their technology but also on the dynamic behavior 
of the individual vehicle. No complicated exhaust measurement apparatus is needed. Employing just a 
telematic device equipped with GNSS and an inertial measurement unit, which can be easily attached 
to the vehicle, we demonstrate how individualised, accurate climate-altering emissions result by using 
figures extracted from European test databases, appropriately combined with real travelled distances, 
speeds, and driving style of each individual car. Pollutant emissions are, in this paper, also assessed 
though in a more general manner, and this represents a starting point for a future complete vehicle-
centric emissions evaluation. This research demonstrates that circulating car emissions have to be 
assessed considering not only the Euro class and type of fuel, but also how the vehicle is driven. In this 
work a new, implementation oriented methodology is proposed in order to properly merge average 
European standard emission data with car-based telematic measures to highlight a new paradigm for 
regulating in a more conscious way the transition of the internal combustion engine car park towards 
a large scale, sustainable mobility ecosystem. This approach would place greater responsibility on the 
driver, without leaving anyone behind and without compelling the car scrapping solely based on the 
Euro class of its engine. The key contribution is ultimately to establish an easy to handle methodology 
enabling targeted and behavior-based traffic management policies. In fact, through a massive 
telematics recent dataset, the proposed virtual emission sensing system reveals that an extensive 
and inefficient use of eco-friendly vehicles produces much more greenhouse gas emissions than older 
vehicles driven in an environmentally responsible way.

In the light of the increasingly radical effects of climate change, the urgency of environmental sustainability 
has become paramount in shaping economic and social development. The mobility sector is poised for 
transformative changes1–3 and the global community has recognized the imperative of mitigating climate 
change and reducing traffic emissions. Within this context, the key objectives of enhancing energy efficiency 
in transportation and transitioning towards zero-emission mobility have arisen as critical endeavors in aligning 
with the Paris Agreement targets of limiting temperature increase to well below 2◦C4. Specifically, the EU has 
taken on a global leadership role in mitigating climate change and developing low-carbon energy technologies 
in the transportation sector5. Currently, transportation accounts for nearly a quarter of Europe’s greenhouse 
gas emissions and it is the leading cause of air pollution6. Among various transportation modes, passenger 
vehicles (cars and buses) contribute for a 45.1%, followed by trucks (29.4%), aviation (11.6%), shipping (10.6%), 
pipelines (2.2%), and rails (1%)7. Furthermore, road transport specifically contributes to more than a third of 
NOx emissions in Europe and serves as the dominant source of polluting gases in urban and heavy traffic areas6. 
To address these challenges and go towards zero-emission mobility, the European Commission has formulated 
the Strategy for Sustainable and Smart Mobility, which aims to guide European transport towards a sustainable 
and smart future, with the goal of achieving a reduction of transport emissions by 90% by 2050, as stated in the 
European Green Deal2,8.

To expedite the monumental transition towards sustainable mobility, policymakers and researchers must 
adopt innovative methodologies that intricately address the dynamic interplay of technology, behavioral shifts, 
and policy frameworks. A body of studies underscores the pivotal role of transitioning from internal combustion 
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engines (ICEs) to electric vehicles (EVs), considering also the role of hybrid vehicles9 and a novel shared mobility 
paradigm in substantially influencing greenhouse gas mitigation10,11. Indeed, hybrid and electric vehicles also 
produce both greenhouse gas emissions and pollutants, taking into account the so-called “well-to-wheel” 
emissions, which are estimated across the entire process of energy flow, from raw material extraction to battery/
vehicle production to ready-to-use car (the global electric vehicle fleet emits half the amount of carbon dioxide 
that would have been emitted from an equivalent fleet of internal combustion engine vehicles12). Nonetheless, 
these emissions are not easily evaluable yet, in particular those related to battery assembly from raw materials. 
Similarly, standard emissions for hybrid vehicles are still in need of verification. Furthermore, motorized 
transport, in particular road private cars, will remain dependent on internal combustion engines for a quite long 
time. Considering the functional limitations of electric vehicles in terms of range autonomy, and on the other 
hand, the need to cover high mileage to breakeven the high purchase cost within a manageable timeframe, the 
transition to electric cars is slower than expected. Moreover, the complexities introduced by inflation, consumer 
preferences, the financial burdens associated with developing a more environmentally friendly electricity grid, 
and disruptions in the supply chain necessitate a judicious equilibrium between advancements in technology 
and the continued presence of internal combustion engine vehicles13–16. In some way, the complete, inclusive 
transition to a fully electric vehicle fleet will only occur concurrently with their shared use, likely enabled by 
driverless technology. Until then, many privately owned cars with internal combustion engines will still be 
in circulation, and their sustainable management, with innovative regulatory tools, will be of fundamental 
importance. Previous studies, as comprehensively reviewed by Singh and Kathuria17, have extensively explored 
driver behavior, encompassing characteristics such as aggressiveness, smoothness, and more. Employing 
various data-gathering methods, studies have offered diverse approaches to evaluate driver behavior, with many 
relying on smartphone sensors18,19 or retrieving information from the On-Board Diagnostic interface alongside 
additional sensors like GNSS from mobile phones20. However, it is crucial to recognize that these smartphone-
based methods, while suitable for everyday tasks, lack the precision required for quality road positioning18,19, 
thus limiting their ability to detect and quantify the true impact of driver behavior on vehicle emissions and fuel 
consumption in real-world scenarios.

To address this critical knowledge gap, we established a groundbreaking partnership with UnipolTech Spa, 
the telematics branch of Unipol Group Spa, a prominent insurance company based in Bologna, Italy, to embark 
on a pioneering analysis. Leveraging an extensive and unparalleled dataset collected from black box devices 
permanently installed in 8,457 privately owned vehicles across Italy, our study encompasses over 11 million trips, 
spanning approximately 190 million kilometers. These black box devices, equipped with Inertial Measurement 
Units (IMU) and GNSS receivers, provide continuous spatio-temporal measurements of each vehicle’s behavior, 
enabling transcend the confines of conventional emission evaluations that predominantly rely on limited criteria 
such as standards and registration year. By leveraging this granular and real-world dataset, the aim is to unlock 
deeper insights into the complex interplay between driving behavior and its direct impact on fuel consumption 
and emissions.

In this article, we present the pioneering data-driven methodology of fine virtual sensing of emissions 
calibrated for each individual vehicle, combining its technology with its actual behavior. By extracting, from 
raw black box tracking data, features such as distances traveled, average speeds on different road types, hard 
accelerations and braking, we develop an innovative method to combine them with the experimental HBEFA 
database, to assess real-world fuel consumption, CO2 emissions, and NOx emissions in a vehicle-centric way. Our 
study offers a paradigm shift in quantifying the true environmental impact of individual vehicles, overcoming 
the perspective of average emission classes. By shedding light on the influence of driving patterns on emissions 
and consumption, we empower policymakers with a novel emission virtual sensing tool to craft evidence-based 
transportation policies that regulate limited urban access zones, incentive sustainable driving habits, and steer 
the renewal of vehicle fleets. Ultimately, our work seeks to transform the discourse on sustainable mobility by 
proposing a simple yet effective and deep clustering methodology. This innovative approach classifies vehicles 
into distinct groups based on their environmental impact, enabling policymakers to identify the best and worst 
performers. By harnessing the power of existing black box data, our findings pave the way for a more sustainable 
future, wherein transportation systems are optimized for environmental stewardship while meeting the mobility 
needs of society, by redefining what are now called black boxes as “green” boxes.

In the following sections, we present our data-driven virtual sensing methodology, discuss the implications of 
our analysis, and outline potential policy interventions that can sustain a more concrete and precise assessment 
of private car emissions, beyond widespread common places.

Results
In this section, we present the system for one’s car individual evaluation of emissions, starting from the existing 
vehicle information and Euro class rating (from Euro 0 to Euro 6, the most recently defined standard). All vehicles 
on European roads, since 1992, must have an Euro class rating which represents the results of tests carried out by 
vehicle makers to simulate the levels of harmful emissions produced in certain driving conditions. Leveraging 
the extensive dataset, collected from vehicles equipped with black box devices between January and September 
2022 and immatriculated all over Italy, we develop a methodology for virtually measuring environmental 
impact and consumption for the individual vehicle, no longer for a whole class of vehicles. Needless to say, the 
issue is quite significant because it is impossible to physically measure a car’s emissions with standard onboard 
instruments. To quantitatively assess the environmental implications of driving behavior, we define and develop 
three adimensional key performance indicators (KPIs):

•	 Pcons (fuel consumption): This KPI encapsulates a range of influential factors, including average speed, road 
type, kilometers traveled, vehicle type, and driving style.
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•	 PCO2 (CO2 emissions): A comprehensive KPI that considers various contributors to carbon emissions, such 
as those associated with average speed, kilometers traveled, road type, fuel type, and vehicle characteristics.

•	 PNOx (NOx emissions): This KPI reflects the nitrogen oxide emissions, taking into account factors like vehicle 
type, Euro Class, and kilometers traveled.The KPIs are scaled from 0 to 1, with 0 signifying optimal environ-
mental performance (low consumption and emissions) and 1 representing the worst case (high consumption 
and emissions). In providing a holistic perspective, these KPIs unveil the intricate interplay between driving 
behavior and its direct effects on fuel consumption and emissions. Our new methodology shows how to use 
known and well established models and combine them with the driving data and vehicles characteristics to 
generate a customized measure of environmental impact of any car. The innovation in the method we will 
illustrate lies in the proposition of an off-the-shelf algorithmic and hardware tool that can accurately monitor 
the emissions of any car in real-time.

Fuel Consumption Analysis
Assessing the real fuel consumption of vehicles is crucial for gaining an accurate understanding of their 
environmental impact and for designing effective sustainability measures. In this respect, we introduce the first 
KPI, Pcons, which represents the output of the proposed model of virtual sensing fuel consumption, properly 
merging together various additional and non standard influential factors, such as average speed, road type, 
kilometers traveled, driving style, and vehicle characteristics.

Based on the experimental relationship between average speed and fuel consumption for road vehicles21, 
reported graphically in Fig. 1a, it is made clear, and is something not quite intuitive at first glance, that internal 
combustion engine cars consume fuel at the lowest rate when driven at speeds of 50-75 km/h, namely in the “Green 
Speed” range. At lower speeds, fuel consumption rapidly worsens, mainly due to the increasing rolling resistance 
force. At higher speeds, more intuitively, more fuel is consumed because of the need to overcome aerodynamic 
drag. To deepen our analysis, we navigate the complexity of evaluating fuel consumption across three distinct 
contexts: urban roads, highways, and mixed roads (encompassing diverse road types within the same journey, 
including extra-urban roads). Utilizing publicly available information, we first refer to manufacturers’ declared 
fuel consumption data for each road typology, as determined through the European mandated Worldwide 
Harmonised Light Vehicles Test Procedure (WLTP)22. The WLTP is divided into four phases that correspond 
to different traffic conditions with varying average speeds: low, medium, high, and extra high. This cycle draws 

Fig. 1.  a Mapping Average Speed vs. Fuel Consumption(FC), pinpointing the optimal “Green Speed” range 
(50-75 km/h). b Normalized Consumption Curves are shown for urban, mixed, and highway contexts by 
normalizing the original FC curve with respect to the Fuel Consumption Values at 18.9 km/h, 39.2 km/h, 
and 60.8 km/h, which correspond to the speeds defined by the Worldwide Harmonized Light Vehicles Test 
Procedure (WLTP) cycle for urban roads, mixed roads, and highways, respectively. c A Close-up presentation 
of the three curves.
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from real-world driving data, representing approximately one million kilometers of driving22. It also considers 
the Power-to-Mass Ratio (PMR) and classifies vehicles into three categories. In our study, we concentrate on 
vehicles of class 3 (PMR 34KW/ton), which aligns with the majority of private cars in Europe.

Given that our dataset provides detailed information about the type of roads traveled (urban, mixed, or 
highway), we determine the average speeds of all trips on these road types to be 21.2 km/h, 41.96 km/h, and 
71.48 km/h, respectively. These values led us to reasonably assume that manufacturers’ WLTP declared fuel 
consumption values are designed around the average speed of the WLTP Class 3 cycle. In fact, for urban and 
mixed roads, the average speeds derived from the low and medium cycles with stops of the WLTP test are 18.9 
km/h and 39.2 km/h, respectively (very similar to the above data driven values of 21.2 km/h and 41.96 km/h). 
These speeds choice aligns with the real-world conditions where drivers often encounter frequent stops and 
starts in urban areas due to traffic lights, stop signs, and so on. In contrast, when assessing highway road fuel 
consumption, we employ the average speed corresponding to the high-speed cycle without stops of the WLTP 
test, which stands at 60.8 km/h (similar to the above data driven value of 71.38 km/h).

Based on the above assumptions on the average velocities employed by the car manufacturers, three 
adimensional correction curves are constructed for urban, mixed, and highway roads normalizing the general 
function, shown in Fig. 1a. For the urban context, a curve modeling the relationship between average speed 
and a new fuel consumption correction factor is derived by normalizing the general function with respect 
to the consumption value (12.15 L/100km) corresponding to the speed of 18.9 km/h. Methodologically this 
means generating a new function, shown in yellow in Fig. 1b and magnified in Fig. 1c, dividing all the y-values 
in Fig. 1a by 12.15 L/100km. Thus, when a vehicle maintains an average speed of 18.9 km/h on urban roads, 
the car’s consumption matches the manufacturer’s declared urban value; deviations from this speed, above 
or below, determine fuel consumption variations according to the correction factor curve shown in Fig.  1b. 
Similar procedures are applied to derive the curves for mixed roads and highways, with normalization based on 
consumption values of 8.75 L/100km for mixed roads and 7 L/100km for highways, corresponding to average 
speeds of 39.2 km/h and 60.8 km/h, respectively. This simple but key correction procedure ensures that the 
derived curves of Fig. 1b and Fig. 1c accurately reflect the declared consumption values by manufacturers for 
trips conducted at the average speeds defined by the WLTP cycle.

This process yields three unique, adimensional speed-based correction functions that establish the relationship 
between the average speed for each road type and the fuel consumption correction, in a way that allows us to 
refine the fuel consumption calculation, commonly based on the distance traveled solely, according to the actual 
average driving speed for each road type and whether it is more or less close to the “Green Speed” range.

Using the normalized consumption curves, shown enlarged in Fig. 1c, as scaling factors, Pcons is formulated 
as follows:

	 Pcons = DU · FU · CU +DM · FM · CM +DH · FH · CH � (1)

where DU , DM , and DH  [km] represent the distances traveled by the car on urban, mixed, and highway roads, 
respectively, FU , FM , and FH  [dimensionless] are the scaling factors corresponding to the vehicle’s average speed 
on these road types and CU , CM , and CH  [L/km] denote the car manufacturer’s declared fuel consumption on 
the same urban, mixed, and highway ride’s segments, respectively.

Since black boxes allow to take into account aggressive or calm driving behavior, we incorporate this into the 
Pcons indicator too, in order to fine-tune even better the consumption indicator. The data provided on harsh 
events, recorded for each vehicle, include information about accelerations and decelerations higher than |0.3|g 
(g-force), in the range from -2 g to 2 g. We then categorize braking and acceleration harsh events based on 
their intensity, Average [0.3-0.5]g, Heavy [0.5-0.8]g, Very Heavy [0.8-1]g, and Extreme [1-2]g. Each category is 
assigned a weight that holds higher with higher g-values, to penalize more the more aggressive behavior. We then 
calculate a weighted sum for each car by multiplying the number of harsh events in each of the four categories 
by the corresponding weight. This sum is then divided by the total distance traveled, yielding the harsh events 
against distance traveled ratio (HR), expressed as:

	
HR =

WA ·NA +WH ·NH +WVH ·NVH +WE ·NE

DT
� (2)

In our model the weights WA, WH , WVH , and WE  have values 0.1, 0.3, 0.6, 1, and are coupled to the average, 
heavy, very heavy, and extreme category, respectively. Similarly, NA, NH , NVH , and NE  denote the number of 
registered harsh events for each vehicle and each category, and DT [km] is the total distance traveled by each car.

The resulting HR values are normalized against the maximum ratio, representing the most aggressive driver. The 
normalized HR falls in the range [0,1] and we define an additional adimensional factor, DS (Driving Style), to 
penalize aggressive driving in Pcons, following other studies23,24 that indicate a worsening of the consumption by 
a percentage from 20% to 40 % with aggressive driving. In our case, we decide conservatively, to penalize the most 
aggressive driver by 30 %: HR=1 implies DS=1.3 (30% higher fuel consumption due to driving style), while a 
non aggressive driver (no harsh events) has a HR=0 associated to DS=1 (no modification of fuel consumption).

This methodology brings to the innovative virtual measure of the final fuel consumption KPI, the latter being 
generated for each individual car:

	 Pcons = (DU · FU · CU +DM · FM · CM +DH · FH · CH) ·DS� (3)
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Ultimately Pcons for each vehicle is normalized against the maximum value of Pcons that corresponds to the 
vehicle that has the higher consumption. This normalization ensures that the KPI for each vehicle ranges between 
0 (vehicle not traveling and not consuming fuel) and 1 (indicating high consumption).

Carbon dioxide emissions analysis
After an extensive literature review on average speed vs. CO2 emission [g/km] relationship, it is confirmed 
that they are linked by a convex polynomial relationship, similar but different in form for petrol and diesel, 
due to their distinct combustion processes23,25–27. This functional relationship clearly indicates how there is 
an intermediate speed range in which emissions reach a minimum level. In this work, we refer to the convex 
polynomial curves (for diesel and petrol vehicles) presented in23 and derived from the Handbook Emission 
Factors for Road Transport (HBEFA), a reliable and well known source for emissions average values calculated 
on real fleets.

We firstly employ the HBEFA database to verify if greenhouse gas emissions are dependent on the Euro class 
of the vehicle, in addition to the type of fuel. The HBEFA-based experimental convex polynomial relationship 
between average speed and CO2 emissions turns out to be in practice invariant with respect to the Euro class of 
the car28. For the purposes of the method, which aims to be a practical and simple tool for regulating traffic also 
based on the driving style of the car, this is an important simplifying factor. Differently from fuel consumption, 
the car makers do not distinguish CO2 emissions on different type of roads. Therefore, we have only two 
normalized CO2 emissions functions, one for diesel and one for petrol. To obtain the dimensionless correction 
factor function, we identify the speed of approximately 70 km/h corresponding to the minimum consumption 
(both for diesel and for petrol) and normalize the functions with respect to their corresponding y-value. This 
procedure is carried over both for the diesel and for petrol curves. In Fig. 2, as an example for the diesel case, we 
show the procedure and the obtained normalized curve (in yellow in Fig. 2b and Fig. 2c), which shows that, as it 
should be, a unity dimensionless correction factor corresponds to the 70 km/h speed.

This speed-based normalization procedure leads to the definition of the type of fuel based CO2 emissions 
KPI:

Fig. 2.  a Mapping Average Speed vs. CO2 emissions of Diesel Vehicles (ECO2D
). b Normalized Emissions 

Curve (NF ECO2D
) is obtained by normalizing the ECO2D

 curve against the minimum emissions value 
associated with speeds falling within the “Green Speed” range. This normalization is conducted under the 
assumption that the declared CO2 emissions value provided by car manufacturers corresponds to this specific 
speed (69.28 km/h), with a reference value of 124.94 g/km. c A Close-up examination of the normalized 
emission curve for diesel vehicles.
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•	 PCO2 for diesel vehicles (D): 

	 PCO2D
=
(
ECO2D

· FUD
·DU + ECO2D

· FMD
·DM + ECO2D

· FHD
·DH

)
·DS� (4)

 where FUD
, FMD

, FHD
 are the adimensional corrective factors based on the average speed on urban, mixed, and 

highway roads, respectively (the function is one, and we consider the different average speeds on each road type). 
DU , DM , DH  [km] are the distances traveled on urban, mixed, and highway roads, and ECO2D

 [g/km] is the CO2 
declared emissions by car manufacturers of a diesel vehicle. DS is defined in the same manner as for Pcons, based 
on studies that reveal a potential increase of around 30% in CO2 emissions with an aggressive driving style29,30.

•	 PCO2 for petrol vehicles (P): 

	 PCO2P
=
(
ECO2P

· FUP
·DU + ECO2P

· FMP
·DM + ECO2P

· FHP
·DH

)
·DS� (5)

 where factors and variables are the same as above, with subscript P that indicates petrol vehicles.

In conclusion, the normalization of PCO2 for each vehicle is carried out relative to the maximum PCO2 value 
observed among all vehicles. This normalization guarantees that the resulting KPI for each vehicle falls within 
the range of 0 (vehicle not traveling and not emitting CO2) to 1 (indicating high CO2 emissions).
It is important to note, even though we use HBEFA, that an analysis based on COPERT, another EU standard 
vehicle emissions calculator,  would have provided very similar results, as it makes use of HBEFA data. It is 
important to emphasize that these emission calculation tools are related to different fleets and various scenarios, 
and they cannot directly model the behavior of each individual vehicle. This study demonstrates the potential 
of these tools in building up the behavior of each individual vehicle, paving the way for more specific and 
personalized emission monitoring systems.

Nitrogen oxides emissions analysis
During vehicle engine operation, combustion generates heat that catalyzes the binding of nitrogen (N) and 
oxygen (O2) to form nitric oxide (NO) or nitrogen dioxide (NO2), both of which are encompassed under the 
term nitrogen oxides (NOx)31. The available information concerning NOx emissions has been affected by biases 
in car manufacturers’ declarations since 2017 (dieselgate) and for a long time diesel polluting real emissions 
where far above the limits,31,32. Anyway, the impact of car technology and Euro class is the most significant 
factor affecting nitrogen oxides emissions and particulate matter. For the aforementioned reasons, we build 
here a simple model that relates the NOx emissions to the distance traveled, referring the interested reader to 
our forthcoming studies on the dependence on speed and driving style. Creating a KPI that considers NOx 
emissions presents an additional challenge as the manufacturer is not required to indicate the values of individual 
vehicle pollutant emissions. Therefore, our methodology assigns to each car the NOx emissions highest value 
corresponding to its Euro class34, for which we possess information derived from the vehicle’s model and year of 
registration. The calculation of PNOx is as follows:

•	 PNOx for diesel vehicles (D): 

	 PNOxD
= ENOxD

·DT � (6)

where DT  is the total distance traveled, ENOxD
 corresponds to the NOx worst emissions of a diesel vehicle 

(based on Euro class).

•	 PNOx for petrol vehicles (P): 

	 PNOxP
= ENOxP

·DT � (7)

where DT  is the total distance traveled, ENOxP
 corresponds to the NOx worst emissions of a petrol vehicle and 

is based on the Euro class.

Concluding the analysis, the normalization of PNOx for individual vehicles is performed against the highest 
observed PNOx value among all vehicles. This normalization guarantees that the resulting KPI for each vehicle 
lies within the range of 0 (vehicle not traveling and not emitting NOx) to 1 (indicating high NOx emissions).
It is worth mentioning here that we are developing, based on HBEFA and validated by experiments from a 
partner certification company, an innovative vehicle-centric method for pollutant emissions measurement 
considering driving behavior as well, which we will publish in the near future. We are sure that this study will be 
able to deepen the analysis on NOx emissions and their dependencies from driving style.
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Determining the actual environmental impact of vehicles
Our study introduces a novel set of KPIs to provide a robust and finer foundation for assessing the true 
environmental impact of vehicles, without the need of bulky and expensive equipment. Before delving into the 
data-driven results comprehensive analysis, it’s essential to emphasize the innovative nature of the presented 
KPIs and their interconnectedness.

Remarkably, a substantial correlation (with a coefficient of R > 0.95) emerges between the fuel consumption 
KPI and the CO2 emissions one. This correlation aligns with the conclusions of prior scientific investigations23,35, 
reinforcing the consistent existence of a linear relationship between fuel consumption and climate altering 
emissions. In light of this correlation, we purposefully focus the following discussion on PCO2 and PNOx.

Taking these KPIs into consideration, our analysis unveils intriguing insights. We find that among the 
vehicles in our dataset, there are 59 vehicles with Euro 3, 1283 with Euro 4, 1563 with Euro 5, and 5552 with 
Euro 6 standard. The Kernel Density Estimation (KDE) of cars depending on PCO2 and PNOx for Euro 4, 5, and 6 
vehicles is depicted in Fig. 3, omitting Euro 3 class due to its limited representation in our sample. Notably, Euro 

Euro Median CO2 Emissions CO2[Kg] Median NOx Emissions NOx[g]

Euro 4 28.10 3255.936 19.80 4580.684

Euro 5 25.00 2892.697 15.90 3681.985

Euro 6 24.10 2800.602 7.40 1700.362

Table 1.  Emission values relative to median KPIs.

 

Fig. 3.  Kernel Density Estimations of PCO2 and PNOx for Euro 4, Euro 5, and Euro 6 vehicles. Each sub-
image corresponds to a specific Euro class, illustrating emissions distribution normalized to a scale of 0 to 1. 
Median values are indicated for each distribution, offering insights into the environmental performance of 
vehicles within each Euro class. For detailed emission values, please refer to the Table 1. Notably, in the PNOx 
distribution, there are two distinct peaks in Euro 4 and Euro 5, due to the limits on NOx emissions that are 
greater than 3 times for Diesel Vehicles (0.08 g/km, 0.06 g/km, 0.06 g/km for Petrol Euro 4, 5, 6, respectively, 
while 0.25 g/km, 0.18 g/km, 0.08 g/km for Diesel Euro 4, 5, 6)34.
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class alone does not provide a complete picture of a vehicle’s environmental impact: while it’s commonly assumed 
that higher Euro standards correlate with lower emissions, our analysis uncovers a more complex reality.

Analyzing the median values, Table  1, of Euro 4, 5, and 6 estimates, we observe a common expectation 
that a higher Euro standard is generally associated with lower emissions. However, the analysis uncovers a 
significant nuance that challenges this conventional wisdom. It is evident that not all vehicles conform to the 
straightforward notion that a lower Euro class implies lower emissions. Some Euro 6 vehicles, indeed, exhibit 
significantly higher emissions compared to Euro 4 ones. Correspondingly, several Euro 4 vehicles demonstrate 
lower emissions compared to their Euro 6 counterparts. These discrepancies are attributable to factors beyond 
the Euro class, such as distance traveled, road types, average speeds, driving style, and vehicle characteristics, as 
encapsulated in the presented KPIs.

In light of these results, policies advocating the renewal of vehicle fleets by scrapping those with lower Euro 
classes, aimed for example at restricting access to urban areas, may be overly simplistic and fail to effectively 
address the genuine environmental impact of vehicles.

Our holistic approach, as demonstrated in this paper, enables in-depth analyses of the emissions of each 
individual vehicle by evaluating all available information through black boxes. Exploiting the full potential of 
our model and the developed KPIs, we considered the four Euro classes present in our dataset: Euro 3, 4, 5, and 6.

To illustrate the insufficiency of Euro classes alone in determining a vehicle’s pollution level, we adopted a 
clustering approach using PCO2 and PNOx as features. Employing the K-Means clustering method with 4 clusters, 
mirroring the number of Euro classes in the considered dataset, we classified vehicles into four environmental 
impact groups. The resulting classification, shown in Fig. 4, significantly differes from the distribution of Euro 
classes in the original dataset (59 Euro 3, 1283 Euro 4, 1563 Euro 5, 5552 Euro 6).

Specifically, the worst environmental performers group contains 636 vehicles, the next cluster comprises 
1688 vehicles, the following includes 2001 vehicles, and the last group, considered the least environmentally 
impactful, includes 4132 vehicles. Notably, this classification allows for a more nuanced impact assessment than 
Euro classes alone, providing a concrete understanding of individual behavior.

Moreover, our model transcends the creation of generic groups and facilitates assessments at different 
granularities of vehicle environmental impact. It enables individualized environmental evaluations, empowering 
policymakers to set emission limits for different pollutants in each vehicle. This approach challenges conventional 
restrictions based solely on Euro classes. In instances where a vehicle might be deemed too polluting under 
existing policies due to its Euro class, our study’s in-depth analysis allows for a re-evaluation, potentially allowing 
it to continue circulating based on its individual environmental performance.

Discussion
Our aim is to present a methodology, lightweight and easily implementable, to virtually sense with precision 
climate altering and polluting emissions on an individual vehicle basis. The method challenges the conventional 
approach to assessing the environmental impact of vehicles based on the widely used Euro class, which proves 
insufficient as the sole determinant of a vehicle’s environmental impact. Our new algorithm KPIs provide a 
comprehensive framework that enables traffic control policies, which currently mostly rely on the Euro class 
solely, to consider also virtual measurements (without expensive sensors) of emissions based on the actual 
behavior of each individual vehicle in terms of distance, speed, and driving style. The current paradigm of 
assessing cars environmental impact fails to acknowledge that an older vehicle could meet environmental 
limitations if used judiciously, with limited kilometers, at eco-friendly speeds, and employing an optimal driving 
style. Hence, since the affordability of a new full electric car might still be a barrier for many, the new proposed 
way of considering emissions allows for the inclusion of social and economic aspects, which will be important 
to evaluate during this transition in mobility, so that it is not destructive and overly economically impactful on 
individuals.

Our proposed methodology embraces a “vehicle-centric” emission virtual measurement process, allowing 
each vehicle to be classified combining average values from trustworthy road transport emission estimation 

Fig. 4.  Cluster Analysis of Vehicle Emissions Based on PCO2 and PNOx KPIs: assessing 8457 vehicles across 
four distinct clusters reveals varying environmental performance. Cluster sizes: 4132 (Cluster 0: environmental 
leaders), 2001 (Cluster 1: low impact), 1688 (Cluster 2: moderate impact), and 636 (high impact).
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models with specific vehicle behavior information, requiring only the use of a simple telematics black box 
equipped with GNSS and IMU. Thereby, cars’ greenhouse gas and pollutant emissions can be individually 
compared to standards set by policymakers seeking to devise effective strategies for transportation rulemaking 
during this transition period in road transportation. The European Commission, in fact, aims to achieve a 
remarkable 90% reduction in transport emissions by 2050. This proposed pioneering approach is crucial for 
ensuring an accurate and as fair as possible transition phase, placing a decisive new responsibility on the driver, 
since he or she can directly ”measure” his or her driving manner effects on emissions, so allowing that, if his or 
her driving is virtuous, even the old car will not necessarily have to be right away decommissioned.

Methods
Characteristics of GNSS receivers used for data collection
The GNSS receivers employed in this study are embedded within a specialized small device, referred to as 
telematic black box, featuring several key attributes crucial for data collection and analysis. The about 5 Mio 
boxes circulating in Italy are equipped also with an Inertial Measurement Unit (IMU), enhancing the precision 
and reliability of gathered data. The IMU, working at a max frequency of 200Hz, supplements GNSS-derived 
positioning information, usually sampled at 10Hz, by providing details regarding device orientation and 
acceleration. The black boxes predominantly utilize modules such as Quectel Mc60 or U-blox, or other variants 
from different brands. Data acquisition is made through the reception of NMEA (National Marine Electronics 
Association) messages, specifically in the $GNRMC format. These messages, collected approximately every 2 
kilometers, contain essential data including UTC time, latitude, longitude, instantaneous speed and heading. The 
2 kilometers interval ensures that data transmission from sensors restricts the centralized server memory usage 
while maintaining proportional data collection aligned with the study’s objectives. Acceleration data, indicative 
of ’harsh events,’ is asynchronously recorded when acceleration values exceed |12 km/(h.s)| (0.3g), providing 
valuable insights into vehicle behavior. The GNSS receivers and in general the black boxes are continuously 
powered, drawing energy directly from the vehicle’s battery or, in some instances, from an onboard battery 
source. This uninterrupted power supply ensures seamless data collection throughout the whole observation 
period.

Dataset
Our dataset consists of around 11000 private vehicles and 25Mio trips between January and September 2022 in 
Italy. The dataset is not publicly available, and has been made accessible through a joint research project with 
UnipolTech (Unipol Group), the technology company of the second insurance group in Italy.

The starting dataset consists of GPS measurements collected at 1 Hz by firmly installed telematic black boxes. 
Every 2km, the sample, denoted as event, is sent to a company’s server and contains the following information: 
Id vehicle, Event Type (0 start, 1 active, 2 stop), Timestamp, Latitude, Longitude, Distance Traveled since the 
previous event, Instantaneous Speed, Heading GPS, Road Type. Exploiting Id vehicle and Event Type, we are able 
to aggregate, for each vehicle, this event-based information into a complete trip-based one. To achieve this goal, 
sequences of start-active-stop events (0,1,...,2) are identified and categorized as a trip. This leads to a trips-based 
dataset containing the necessary information for the aim of this study: Id Vehicle, Id Trip, Time Start, Time End, 
Latitude Start, Longitude Start, Latitude End, Longitude End, Distance, Duration, Road Type, Average Speed.

In addition to trip-specific information, we have another raw dataset, which records asynchronously for each 
vehicle (identified by Id vehicle), the acceleration and braking events exceeding the threshold of |0.3|g. In this 
way, the trips-based dataset is augmented with information on all harsh events.

Furthermore, we also have the original vehicle information - car model, manufacturer, type of fuel, and year 
of registration - that can be linked to the trip-based dataset via the Id Vehicle field. This information enables 
access to public databases concerning Euro class, declared consumption and emissions.

Data preprocessing
In our analysis, we focus on internal combustion engine vehicles powered by either petrol or diesel engines. 
We apply specific pre-processing criteria to the dataset to ensure its relevance and feasibility for our study. The 
following criteria are employed for data cleaning: 

	1.	� Trips with a total distance shorter than 500 m are excluded.
	2.	� Trips with a total time shorter than 5 minutes or longer than 12 hours are removed.
	3.	� Trips with an average speed lower than 5 km/h or higher than 150 km/h are considered unfeasible and are 

eliminated.Furthermore, vehicles with more than 70% of trips eliminated during this phase are also excluded 
from the analysis. As a result of the above criteria, the dataset is refined to encompass 8457 vehicles (87% 
diesel, 13% petrol) and approximately 11Mio trips.

Data availability
The dataset used and analysed during the current study cannot be made publicly available since it is obtained 
from third parties, within a funded research collaboration with UnipolTech Spa. The research contract contains 
a confidentiality clause stating that Politecnico di Milano is obligated to observe secrecy towards any person not 
authorized by UnipolTech Spa. This applies to data, information, knowledge, documents identified as confiden-
tial that have been communicated by UnipolTech Spa under this contract. Data may eventually be made available 
from the corresponding author in a partial but exhaustive version, on reasonable request.
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